UPPSALA UNIVERSITET

- Background
- Discussion problems
- A probability example
- A statistics example
- Evaluation

Discussing statistics: using problems with more than one correct answer to facilitate students' understanding

Måns Thulin
Department of Mathematics
Uppsala University, Sweden
thulin@math.uu.se

Background

- A post-calculus introductory course in probability and statistics, aimed at second-year engineering students.
- 120-140 students.
- Lectures, problem-solving sessions, computer exercises with R .
- Traditional homework problems, where a single statistical method is to be applied.
- We have now skipped written homework problems in favour of "discussion problems", treated during the problem-solving sessions.

Discussion problems

- Background
- Discussion problems
- A probability example
- A statistics example
- Evaluation
- Problems are handed out in advance.
- The students prepare written solutions.
- Discussion in groups of 4-5.
- Teaching assistants listen in and help out.
- Students must participate in at least 7 out of 12 problem discussions in order to pass the course.
- Background
- Discussion problems
- A probability example
- A statistics example
- Evaluation

A first example

An old textbook problem:

A sign in an elevator says "maximum 8 people or 630 kg ". Assume that the weight of a randomly selected person is $N\left(70,10^{2}\right)$ distributed. Compute the probability that 8 people overload the elevator by weighing more than 630 kg together.

Slightly altered:

A sign in an elevator says " maximum 8 people or 630 kg ". Assume that the weight of a randomly selected person is normally distributed. Make assumptions about the mean and variance of this distribution and compute the probability that 8 people overload the elevator by weighing more than 630 kg together.

A first example

UPPSALA UNIVERSITET

- Discussion problems
- A probability example
- A statistics example
- Evaluation

$$
\mu=70 \mathrm{~kg}
$$

$\mu=80 \mathrm{~kg}$

- Background
- Discussion problems
- A probability example
- A statistics example
- Evaluation

A first example

- Assumptions about μ :
- Most take $\mu \in\{70,75,80\}$.
- Some take $\mu=78.75=630 / 8$.
- Assumptions about σ :
- Most students had problems with the meaning of σ.
- The empirical rule: 95% within 2σ from μ.
- Is normality a reasonable assumption?
- The perils of guessing parameter values.

A second example

UPPSALA UNIVERSITET

- Background
- Discussion problems
- A probability example
- A statistics example
- Evaluation

It is suspected that a new instrument A needs to be calibrated. 80 test measurements are performed to investigate this. For each of the 80 test situations one measurement is taken with A and one measurement is taken with a calibrated instrument B.

For 52 of these, A gives a higher value. If x_{i} is measurement i with A and y_{i} is measurement i with B we can let $z_{i}=x_{i}-y_{i}$ be the difference between the measurements. We find $z=0.1$ and $s_{z}=0.52$. The measured values can be assumed to be independent.
(a) Compute a 95% confidence interval for the proportion of measurements for which A gives higher values than B.
(b) Compute a 95% confidence interval for the difference in mean between the two devices.
(c) Judging from (a) and (b), would you say that device A needs to be calibrated?

- Background
- Discussion problems
- A probability example
- A statistics example
- Evaluation

A second example

- In (a) the Wald interval for a binomial proportion is (0.545, 0.755).
- In (b) the interval is $(-0.016,0.216)$ under the assumption of normality.
- Does A need to be calibrated?
- The binomial interval does not use all the available information!
- The interval for the difference of means relies on more assumptions!

UPPSALA UNIVERSITET

- Background
- Discussion problems
- A probability example
- A statistics example
- Evaluation

Evaluation

- Interviews with students and anonymous written course evaluations.
- Students had to wait.
- Important that the problems are handed out well in advance.
+ High praise in written course evaluations.
+ Less pressure than written homeworks. Less worried about producing a correct solution, and more keen to understand the problem and the solution.
+ The discussions became a learning opportunity.
+ Instant feedback from the teacher.
+ The teachers also received swift feedback on their teaching!

