Student Perspectives on Software Used in an Introductory Statistical Computing Course

Chelsea Snyder Julia L. Sharp

Clemson University

May 19 - 23, 2014

Introduction

- Importance of statistical computing
 - Readiness to solve real-world problems
 - Job preparation

Introduction

- Importance of statistical computing
 - Readiness to solve real-world problems
 - Job preparation
- Introductory statistical computing course at Clemson University
 - $\bullet~$ SAS and R
 - Data importation, data manipulation, basic descriptive statistics, basic graphical procedures, inference for a single mean
 - Majors of Undergraduate Students: Mathematical Sciences, etc.
 - Majors of Graduate Students: Agricultural Education, Applied Economics and Statistics, Applied Sociology, Economics, Policy Studies, Wildlife and Fisheries Biology, etc.

Introduction

- Importance of statistical computing
 - Readiness to solve real-world problems
 - Job preparation
- Introductory statistical computing course at Clemson University
 - SAS and R
 - Data importation, data manipulation, basic descriptive statistics, basic graphical procedures, inference for a single mean
 - Majors of Undergraduate Students: Mathematical Sciences, etc.
 - Majors of Graduate Students: Agricultural Education, Applied Economics and Statistics, Applied Sociology, Economics, Policy Studies, Wildlife and Fisheries Biology, etc.
- Goal of study: To determine which software programs should be focused upon in the course to best prepare students for their future work

Pre-Course Survey: Format and Participants

Format:

- Students who took course in 2011 and 2012
- Software proficiency and interest
- Computer science, database, and LATEX exposure and experience

Pre-Course Survey: Format and Participants

Format:

- Students who took course in 2011 and 2012
- Software proficiency and interest
- Computer science, database, and LATEX exposure and experience

Participants:

- 41 students took the course in 2011 and 2012
- 34 (82.93%) students consented and completed the survey
- 23 (67.65%) undergraduate student respondents, and 11 (32.35%) graduate student respondents

Post-Course Survey: Format and Participants

Format:

- Students who took the course in 2008 2012
- Software proficiency and use
- Software usefulness in current jobs and/or coursework
- Recommendations and what software to focus upon in future semesters

Post-Course Survey: Format and Participants

Format:

- Students who took the course in 2008 2012
- Software proficiency and use
- Software usefulness in current jobs and/or coursework
- Recommendations and what software to focus upon in future semesters

Participants:

- 69 total students took the course between 2008 and 2012
- 21 (35.00%) students consented and completed the post-course survey
- 14 (67.67%) undergraduate student respondents, and 7 (33.33%) graduate student respondents

Software Used

Software Used Prior to Course

Other: Undergraduate – MatLab, Maple; Graduate – Eviews, Alglib.net

Software Used

Software Used Prior to Course

Software Used Since Course

Other: Undergraduate – MatLab, Maple; Graduate – Eviews, Alglib.net Other: Undergraduate – Winbugs, Mplus Graduate – (none)

Pre-Course Software Proficiency

Figure: Comparing Proficiency for Undergraduate Students and Graduate Students, Where a * Indicates Significance at $\alpha = 0.05$

Pre-Course Software Proficiency

Figure: Comparing Proficiency for Undergraduate Students and Graduate Students, Where a * Indicates Significance at $\alpha = 0.05$

Proficiency of graduate students is significantly greater than proficiency of undergraduate students for JMP, SAS, and SPSS.

Post-Course Software Proficiency

Figure: Proficiency for Undergraduate and Graduate Students, Where a * Indicates Significance at $\alpha = 0.05$

Post-Course Software Proficiency

Figure: Proficiency for Undergraduate and Graduate Students, Where a * Indicates Significance at $\alpha = 0.05$

• Following the course, proficiency of graduate students is significantly greater than proficiency of undergraduate students for JMP.

Post-Course Software Proficiency

Figure: Proficiency for Undergraduate and Graduate Students, Where a * Indicates Significance at $\alpha = 0.05$

- Following the course, proficiency of graduate students is significantly greater than proficiency of undergraduate students for JMP.
- There is a significant increase in proficiency from before to after the course for JMP, R, and SAS.

Post-Course Software Proficiency

Figure: Proficiency for Undergraduate and Graduate Students, Where a * Indicates Significance at $\alpha = 0.05$

- Following the course, proficiency of graduate students is significantly greater than proficiency of undergraduate students for JMP.
- There is a significant increase in proficiency from before to after the course for JMP, R, and SAS.
- Undergraduate and graduate students did not significantly differ in their change in proficiency.

Post-Course Software Use in Current Position

"Learning ______ in this course prepared me for its use in my current position."

Figure: Comparing Agreement for Undergraduate Students and Graduate Students, Where a * Indicates Significance at $\alpha = 0.05$

Post-Course Software Use in Current Position

"Learning ______ in this course prepared me for its use in my current position."

Graduate

Undergraduate

Figure: Comparing Agreement for Undergraduate Students and Graduate Students, Where a * Indicates Significance at $\alpha = 0.05$

There is not a significant difference in agreement with the benefit of learning a program for their current position between undergraduate and graduate student respondents.

Post-Course Frequency of Software Use

Figure: Comparing Post-Course Frequency of Software Use for Undergraduate Students and Graduate Students, Where a * Indicates Significance at $\alpha = 0.05$

Post-Course Frequency of Software Use

Figure: Comparing Post-Course Frequency of Software Use for Undergraduate Students and Graduate Students, Where a * Indicates Significance at $\alpha = 0.05$ There is not a significant difference between undergraduate and graduate student respondents in frequency of use of software packages.

Chelsea Snyder Julia L. Sharp Student Perspectives on Software

Software Interest and Recommendations

Software Learning Preference in Course

Other: SQL Language

Software Interest and Recommendations

Software Learning Preference in Course

Software Recommendations for Future Semesters

Other: SQL Language

Conclusion

Students would be best served if they were taught **SAS**, **R**, and **Microsoft Excel** in the introductory statistics course.

Conclusion

Students would be best served if they were taught **SAS**, **R**, and **Microsoft Excel** in the introductory statistics course.

Main Limitation of Study: Small Sample Sizes

- Pre-course survey: Not given to students who took course in 2008 2010
- Post-course survey: Not all who were contacted responded to the survey request

Conclusion

Students would be best served if they were taught **SAS**, **R**, and **Microsoft Excel** in the introductory statistics course.

Main Limitation of Study: Small Sample Sizes

- Pre-course survey: Not given to students who took course in 2008 2010
- Post-course survey: Not all who were contacted responded to the survey request

Future Work

- Change wording of question regarding software proficiency, as it may have contributed to high non-response levels for this question.
- Continue to implement the surveys to add to current data