
I N T R O D U C T I O N T O
R / R S T U D I O F O R N E W U S E R S

E C O T S 2 0 1 8

O U T L I N E

• Part I: Personal Background

• Part II: For Students with No Background in
Programming

• Part III: For Those Educating Students with No
Background in Programming

• Part IV: For Those with a Background in Programming

• Appendix: External Resources

P E R S O N A L
B A C K G R O U N D

PA R T I

C H R I S T O P H E R
P E T E R M A K R I S

• Studied Logic, Discrete
Mathematics, & Statistics

• Graduate of Master’s of
Statistical Practice Program at
Carnegie Mellon University

• Data Scientist

• Director of Data Science

• Programs Administrator; Adjunct
Instructor Department of
Statistics & Data Science at CMU

Statistics & Data Science

Functions
Data Visualization

Statistics & Data Science

Writing Scripts

EDA & Modeling

Data Transformations

Object Types

Statistics & Data Science

R/RStudio

F O R S T U D E N T S W I T H N O
B A C K G R O U N D I N P R O G R A M M I N G

PA R T I I

A B R I E F H I S T O R Y O F R

A B R I E F H I S T O R Y O F R

• R is based on the S language, first developed in the 1960s &
1970s at Bell Laboratories.

A B R I E F H I S T O R Y O F R

• R is based on the S language, first developed in the 1960s &
1970s at Bell Laboratories.

• Under the GNU public license, developers Ross Ihaka & Robert
Gentleman released R in the 1990s.

A B R I E F H I S T O R Y O F R

• R is based on the S language, first developed in the 1960s &
1970s at Bell Laboratories.

• Under the GNU public license, developers Ross Ihaka & Robert
Gentleman released R in the 1990s.

• The popularity of R has grown because of its flexibility for data
analysis, graphical tools, & free availability.

A B R I E F H I S T O R Y O F R

• R is based on the S language, first developed in the 1960s &
1970s at Bell Laboratories.

• Under the GNU public license, developers Ross Ihaka & Robert
Gentleman released R in the 1990s.

• The popularity of R has grown because of its flexibility for data
analysis, graphical tools, & free availability.

• While the source code archives are maintained by the R Core
Team, any researcher can contribute code via packages/libraries.

A B R I E F H I S T O R Y O F R

• R is based on the S language, first developed in the 1960s &
1970s at Bell Laboratories.

• Under the GNU public license, developers Ross Ihaka & Robert
Gentleman released R in the 1990s.

• The popularity of R has grown because of its flexibility for data
analysis, graphical tools, & free availability.

• While the source code archives are maintained by the R Core
Team, any researcher can contribute code via packages/libraries.

• Updates to the core versions of R are relatively frequent,
reflecting the growth of the field.

G R O W T H I N P O P U L A R I T Y O F R

G R O W T H I N P O P U L A R I T Y O F R

• Sum of monthly email traffic on each software’s main listserv discussion list.
(Robert A. Muenchen, StatsBlogs)

http://www.statsblogs.com/2013/02/12/what-analytic-software-are-people-discussing/

P H A S E S O F E AT I N G I C E C R E A M T O O
FA S T

P H A S E S O F E AT I N G I C E C R E A M T O O
FA S T

P H A S E S O F E AT I N G I C E C R E A M T O O
FA S T

P H A S E S O F E AT I N G I C E C R E A M T O O
FA S T

P H A S E S O F E AT I N G I C E C R E A M T O O
FA S T

P H A S E S O F E AT I N G I C E C R E A M T O O
FA S T

W H E R E T O B E G I N F O R L E A R N E R S ?

W H E R E T O B E G I N F O R L E A R N E R S ?

• Every decision has benefits & detractions.

W H E R E T O B E G I N F O R L E A R N E R S ?

• Every decision has benefits & detractions.
• Many positives are accompanied by a negative.

W H E R E T O B E G I N F O R L E A R N E R S ?

• Every decision has benefits & detractions.
• Many positives are accompanied by a negative.

• The biggest benefit of the R language is its vast
flexibility to perform tasks in a myriad of ways.

W H E R E T O B E G I N F O R L E A R N E R S ?

• Every decision has benefits & detractions.
• Many positives are accompanied by a negative.

• The biggest benefit of the R language is its vast
flexibility to perform tasks in a myriad of ways.

• Can be seen as both a blessing and a curse.

W H E R E T O B E G I N F O R L E A R N E R S ?

• Every decision has benefits & detractions.
• Many positives are accompanied by a negative.

• The biggest benefit of the R language is its vast
flexibility to perform tasks in a myriad of ways.

• Can be seen as both a blessing and a curse.
• What’s the standard in the ever-growing field?

W H E R E T O B E G I N F O R L E A R N E R S ?

• Every decision has benefits & detractions.
• Many positives are accompanied by a negative.

• The biggest benefit of the R language is its vast
flexibility to perform tasks in a myriad of ways.

• Can be seen as both a blessing and a curse.
• What’s the standard in the ever-growing field?

• Keep in mind The 80/20 Rule:

W H E R E T O B E G I N F O R L E A R N E R S ?

• Every decision has benefits & detractions.
• Many positives are accompanied by a negative.

• The biggest benefit of the R language is its vast
flexibility to perform tasks in a myriad of ways.

• Can be seen as both a blessing and a curse.
• What’s the standard in the ever-growing field?

• Keep in mind The 80/20 Rule:
• For may events, 80% of the effects come from 20%

of the causes.

T H E P R O B L E M : C O M P L E X A N S W E R S T O
S I M P L E Q U E S T I O N S

T H E P R O B L E M : C O M P L E X A N S W E R S T O
S I M P L E Q U E S T I O N S
• Suppose you want to numerically analyze the variable
x in a data frame mydata. In R, you could choose to
run any of the following code blocks:

T H E P R O B L E M : C O M P L E X A N S W E R S T O
S I M P L E Q U E S T I O N S
• Suppose you want to numerically analyze the variable
x in a data frame mydata. In R, you could choose to
run any of the following code blocks:

1. summary(mydata$x)

T H E P R O B L E M : C O M P L E X A N S W E R S T O
S I M P L E Q U E S T I O N S
• Suppose you want to numerically analyze the variable
x in a data frame mydata. In R, you could choose to
run any of the following code blocks:

1. summary(mydata$x)

2. with(mydata, summary(x))

T H E P R O B L E M : C O M P L E X A N S W E R S T O
S I M P L E Q U E S T I O N S
• Suppose you want to numerically analyze the variable
x in a data frame mydata. In R, you could choose to
run any of the following code blocks:

1. summary(mydata$x)

2. with(mydata, summary(x))

3. summary(mydata[,1])

T H E P R O B L E M : C O M P L E X A N S W E R S T O
S I M P L E Q U E S T I O N S
• Suppose you want to numerically analyze the variable
x in a data frame mydata. In R, you could choose to
run any of the following code blocks:

1. summary(mydata$x)

2. with(mydata, summary(x))

3. summary(mydata[,1])

4. summary(mydata$”x”)

5. summary(mydata[”x”])

6. summary(mydata[,”x”])

7. summary(mydata[[”x”]])

8. summary(mydata[1])

9. summary(mydata[[1]])

10. attach(mydata);
summary(x)

11. summary(select(mydata,
x))

12. mydata %>%
with(summary(x))

13. mydata %>% summary(.$x)

14. mydata %$% summary(x)

15. summary(subset(mydata,
select=x))

…

T H E P R O B L E M : C O M P L E X A N S W E R S T O
S I M P L E Q U E S T I O N S
• Suppose you want to numerically analyze the variable
x in a data frame mydata. In R, you could choose to
run any of the following code blocks:

1. summary(mydata$x)

2. with(mydata, summary(x))

3. summary(mydata[,1])

4. summary(mydata$”x”)

5. summary(mydata[”x”])

6. summary(mydata[,”x”])

7. summary(mydata[[”x”]])

8. summary(mydata[1])

9. summary(mydata[[1]])

10. attach(mydata);
summary(x)

11. summary(select(mydata,
x))

12. mydata %>%
with(summary(x))

13. mydata %>% summary(.$x)

14. mydata %$% summary(x)

15. summary(subset(mydata,
select=x))

…

T H E S O L U T I O N : B E A U T Y I N PA R S I M O N Y

T H E S O L U T I O N : B E A U T Y I N PA R S I M O N Y

• Some of the most common tasks of basic data analysis require the creation of:

T H E S O L U T I O N : B E A U T Y I N PA R S I M O N Y

• Some of the most common tasks of basic data analysis require the creation of:
1.Variable summaries.

T H E S O L U T I O N : B E A U T Y I N PA R S I M O N Y

• Some of the most common tasks of basic data analysis require the creation of:
1.Variable summaries.
2.Transformed variables.

T H E S O L U T I O N : B E A U T Y I N PA R S I M O N Y

• Some of the most common tasks of basic data analysis require the creation of:
1.Variable summaries.
2.Transformed variables.
3.Reordered observations.

T H E S O L U T I O N : B E A U T Y I N PA R S I M O N Y

• Some of the most common tasks of basic data analysis require the creation of:
1.Variable summaries.
2.Transformed variables.
3.Reordered observations.
4.Subsetted variables.

T H E S O L U T I O N : B E A U T Y I N PA R S I M O N Y

• Some of the most common tasks of basic data analysis require the creation of:
1.Variable summaries.
2.Transformed variables.
3.Reordered observations.
4.Subsetted variables.
5.Subsetted observations.

T H E S O L U T I O N : B E A U T Y I N PA R S I M O N Y

• Some of the most common tasks of basic data analysis require the creation of:
1.Variable summaries.
2.Transformed variables.
3.Reordered observations.
4.Subsetted variables.
5.Subsetted observations.

• Analyze observations under certain conditions.

T H E S O L U T I O N : B E A U T Y I N PA R S I M O N Y

• Some of the most common tasks of basic data analysis require the creation of:
1.Variable summaries.
2.Transformed variables.
3.Reordered observations.
4.Subsetted variables.
5.Subsetted observations.

• Analyze observations under certain conditions.

• Employ The 80/20 Rule with dplyr — a package for data manipulation that provides
consistency and brevity:

T H E S O L U T I O N : B E A U T Y I N PA R S I M O N Y

• Some of the most common tasks of basic data analysis require the creation of:
1.Variable summaries.
2.Transformed variables.
3.Reordered observations.
4.Subsetted variables.
5.Subsetted observations.

• Analyze observations under certain conditions.

• Employ The 80/20 Rule with dplyr — a package for data manipulation that provides
consistency and brevity:

1.Collapse many values down to a single summary with summarize().

T H E S O L U T I O N : B E A U T Y I N PA R S I M O N Y

• Some of the most common tasks of basic data analysis require the creation of:
1.Variable summaries.
2.Transformed variables.
3.Reordered observations.
4.Subsetted variables.
5.Subsetted observations.

• Analyze observations under certain conditions.

• Employ The 80/20 Rule with dplyr — a package for data manipulation that provides
consistency and brevity:

1.Collapse many values down to a single summary with summarize().
2.Create new variables with functions of existing variables with mutate().

T H E S O L U T I O N : B E A U T Y I N PA R S I M O N Y

• Some of the most common tasks of basic data analysis require the creation of:
1.Variable summaries.
2.Transformed variables.
3.Reordered observations.
4.Subsetted variables.
5.Subsetted observations.

• Analyze observations under certain conditions.

• Employ The 80/20 Rule with dplyr — a package for data manipulation that provides
consistency and brevity:

1.Collapse many values down to a single summary with summarize().
2.Create new variables with functions of existing variables with mutate().
3.Change observation order with arrange().

T H E S O L U T I O N : B E A U T Y I N PA R S I M O N Y

• Some of the most common tasks of basic data analysis require the creation of:
1.Variable summaries.
2.Transformed variables.
3.Reordered observations.
4.Subsetted variables.
5.Subsetted observations.

• Analyze observations under certain conditions.

• Employ The 80/20 Rule with dplyr — a package for data manipulation that provides
consistency and brevity:

1.Collapse many values down to a single summary with summarize().
2.Create new variables with functions of existing variables with mutate().
3.Change observation order with arrange().
4.Pick variables by their names with select().

T H E S O L U T I O N : B E A U T Y I N PA R S I M O N Y

• Some of the most common tasks of basic data analysis require the creation of:
1.Variable summaries.
2.Transformed variables.
3.Reordered observations.
4.Subsetted variables.
5.Subsetted observations.

• Analyze observations under certain conditions.

• Employ The 80/20 Rule with dplyr — a package for data manipulation that provides
consistency and brevity:

1.Collapse many values down to a single summary with summarize().
2.Create new variables with functions of existing variables with mutate().
3.Change observation order with arrange().
4.Pick variables by their names with select().
5.Pick observations by their values with filter().

T H E S O L U T I O N : B E A U T Y I N PA R S I M O N Y

• Some of the most common tasks of basic data analysis require the creation of:
1.Variable summaries.
2.Transformed variables.
3.Reordered observations.
4.Subsetted variables.
5.Subsetted observations.

• Analyze observations under certain conditions.

• Employ The 80/20 Rule with dplyr — a package for data manipulation that provides
consistency and brevity:

1.Collapse many values down to a single summary with summarize().
2.Create new variables with functions of existing variables with mutate().
3.Change observation order with arrange().
4.Pick variables by their names with select().
5.Pick observations by their values with filter().

• Analyze observations with subsets with group_by().

T H E S O L U T I O N : B E A U T Y I N PA R S I M O N Y

T H E S O L U T I O N : B E A U T Y I N PA R S I M O N Y

• Using dplyr, we not only get parsimony in few
functions to learn, but also consistency in operation. All
of the aforementioned functions work similarly:

T H E S O L U T I O N : B E A U T Y I N PA R S I M O N Y

• Using dplyr, we not only get parsimony in few
functions to learn, but also consistency in operation. All
of the aforementioned functions work similarly:

• The first argument is a data frame.

T H E S O L U T I O N : B E A U T Y I N PA R S I M O N Y

• Using dplyr, we not only get parsimony in few
functions to learn, but also consistency in operation. All
of the aforementioned functions work similarly:

• The first argument is a data frame.
• The subsequent arguments describe what to do

with the data frame using variable names.

T H E S O L U T I O N : B E A U T Y I N PA R S I M O N Y

• Using dplyr, we not only get parsimony in few
functions to learn, but also consistency in operation. All
of the aforementioned functions work similarly:

• The first argument is a data frame.
• The subsequent arguments describe what to do

with the data frame using variable names.
• The result yields a new data frame.

T H E S O L U T I O N : B E A U T Y I N PA R S I M O N Y

• Using dplyr, we not only get parsimony in few
functions to learn, but also consistency in operation. All
of the aforementioned functions work similarly:

• The first argument is a data frame.
• The subsequent arguments describe what to do

with the data frame using variable names.
• The result yields a new data frame.

• Consistency in properties allows for the chaining of
multiple simple steps in order to produce a complex
result.

F O R T H O S E E D U C AT I N G S T U D E N T S
W I T H N O B A C K G R O U N D I N
P R O G R A M M I N G

PA R T I I I

W H E R E T O B E G I N F O R E D U C AT O R S ?

W H E R E T O B E G I N F O R E D U C AT O R S ?

• Attempt to get inside the mind of the complete beginner.

W H E R E T O B E G I N F O R E D U C AT O R S ?

• Attempt to get inside the mind of the complete beginner.
• Try to personify objects, methodology, syntax, etc.

W H E R E T O B E G I N F O R E D U C AT O R S ?

• Attempt to get inside the mind of the complete beginner.
• Try to personify objects, methodology, syntax, etc.
• Ask “why?” five times to get at the root of basic

understanding.

W H E R E T O B E G I N F O R E D U C AT O R S ?

• Attempt to get inside the mind of the complete beginner.
• Try to personify objects, methodology, syntax, etc.
• Ask “why?” five times to get at the root of basic

understanding.
• Ask “what would you do?” to build intuition of complex tasks.

W H E R E T O B E G I N F O R E D U C AT O R S ?

• Attempt to get inside the mind of the complete beginner.
• Try to personify objects, methodology, syntax, etc.
• Ask “why?” five times to get at the root of basic

understanding.
• Ask “what would you do?” to build intuition of complex tasks.

• Keep in mind the common pitfalls.

W H E R E T O B E G I N F O R E D U C AT O R S ?

• Attempt to get inside the mind of the complete beginner.
• Try to personify objects, methodology, syntax, etc.
• Ask “why?” five times to get at the root of basic

understanding.
• Ask “what would you do?” to build intuition of complex tasks.

• Keep in mind the common pitfalls.
• What were things you found troublesome when learning R/

RStudio yourself?

W H E R E T O B E G I N F O R E D U C AT O R S ?

• Attempt to get inside the mind of the complete beginner.
• Try to personify objects, methodology, syntax, etc.
• Ask “why?” five times to get at the root of basic

understanding.
• Ask “what would you do?” to build intuition of complex tasks.

• Keep in mind the common pitfalls.
• What were things you found troublesome when learning R/

RStudio yourself?

• Remember that hindsight is always 20/20.

W H E R E T O B E G I N F O R E D U C AT O R S ?

• Attempt to get inside the mind of the complete beginner.
• Try to personify objects, methodology, syntax, etc.
• Ask “why?” five times to get at the root of basic

understanding.
• Ask “what would you do?” to build intuition of complex tasks.

• Keep in mind the common pitfalls.
• What were things you found troublesome when learning R/

RStudio yourself?

• Remember that hindsight is always 20/20.
• What were the “golden nuggets” you personally wish you

learned much earlier?

P E R S O N I F I C AT I O N

P E R S O N I F I C AT I O N

• Goal: Understand the difference between vectors,
matrices, data frames, & lists.

P E R S O N I F I C AT I O N

• Goal: Understand the difference between vectors,
matrices, data frames, & lists.

• Also, understand the syntax regarding list
subsetting.

P E R S O N I F I C AT I O N

• Goal: Understand the difference between vectors,
matrices, data frames, & lists.

• Also, understand the syntax regarding list
subsetting.

• Common Pitfall: Misconceptions in understanding the
usage of [] and [[]] syntax.

P E R S O N I F I C AT I O N

• Goal: Understand the difference between vectors,
matrices, data frames, & lists.

• Also, understand the syntax regarding list
subsetting.

• Common Pitfall: Misconceptions in understanding the
usage of [] and [[]] syntax.

• Solution: Personify to relate a non-programming
concept to learning R.

P E R S O N I F I C AT I O N

P E R S O N I F I C AT I O N

• Personification: Moving from one house to another.

P E R S O N I F I C AT I O N

• Personification: Moving from one house to another.
• Lists are the “throw-in-the-kitchen-sink” object; you need

to pack everything!

P E R S O N I F I C AT I O N

• Personification: Moving from one house to another.
• Lists are the “throw-in-the-kitchen-sink” object; you need

to pack everything!
• Various types of objects are placed in labeled boxes.

P E R S O N I F I C AT I O N

• Personification: Moving from one house to another.
• Lists are the “throw-in-the-kitchen-sink” object; you need

to pack everything!
• Various types of objects are placed in labeled boxes.
• In order to use your items, you need to both go to the

appropriate room and also open the box.

P E R S O N I F I C AT I O N

• Personification: Moving from one house to another.
• Lists are the “throw-in-the-kitchen-sink” object; you need

to pack everything!
• Various types of objects are placed in labeled boxes.
• In order to use your items, you need to both go to the

appropriate room and also open the box.

P E R S O N I F I C AT I O N

• Personification: Moving from one house to another.
• Lists are the “throw-in-the-kitchen-sink” object; you need

to pack everything!
• Various types of objects are placed in labeled boxes.
• In order to use your items, you need to both go to the

appropriate room and also open the box.

• Basic Necessary Insights:

P E R S O N I F I C AT I O N

• Personification: Moving from one house to another.
• Lists are the “throw-in-the-kitchen-sink” object; you need

to pack everything!
• Various types of objects are placed in labeled boxes.
• In order to use your items, you need to both go to the

appropriate room and also open the box.

• Basic Necessary Insights:
• Lists need not be homogenous.

P E R S O N I F I C AT I O N

• Personification: Moving from one house to another.
• Lists are the “throw-in-the-kitchen-sink” object; you need

to pack everything!
• Various types of objects are placed in labeled boxes.
• In order to use your items, you need to both go to the

appropriate room and also open the box.

• Basic Necessary Insights:
• Lists need not be homogenous.
• Lists can contain objects of varied types, sizes, etc.

P E R S O N I F I C AT I O N

• Personification: Moving from one house to another.
• Lists are the “throw-in-the-kitchen-sink” object; you need

to pack everything!
• Various types of objects are placed in labeled boxes.
• In order to use your items, you need to both go to the

appropriate room and also open the box.

• Basic Necessary Insights:
• Lists need not be homogenous.
• Lists can contain objects of varied types, sizes, etc.
• Lists are subsetted differently.

A S K I N G “ W H Y ? ” F I V E T I M E S

A S K I N G “ W H Y ? ” F I V E T I M E S

• Goal: Understand the difference between tapply() and sapply().

A S K I N G “ W H Y ? ” F I V E T I M E S

• Goal: Understand the difference between tapply() and sapply().

• Solution: Get at the root of basic understanding by asking why:

A S K I N G “ W H Y ? ” F I V E T I M E S

• Goal: Understand the difference between tapply() and sapply().

• Solution: Get at the root of basic understanding by asking why:

• Why might we use tapply() instead of sapply()?

A S K I N G “ W H Y ? ” F I V E T I M E S

• Goal: Understand the difference between tapply() and sapply().

• Solution: Get at the root of basic understanding by asking why:

• Why might we use tapply() instead of sapply()?
1.To tabulate our results by a grouping factor instead of just

summarizing in aggregate. Why?

A S K I N G “ W H Y ? ” F I V E T I M E S

• Goal: Understand the difference between tapply() and sapply().

• Solution: Get at the root of basic understanding by asking why:

• Why might we use tapply() instead of sapply()?
1.To tabulate our results by a grouping factor instead of just

summarizing in aggregate. Why?
2.To understand how relationships among our variables

change based upon other variables. Why?

A S K I N G “ W H Y ? ” F I V E T I M E S

• Goal: Understand the difference between tapply() and sapply().

• Solution: Get at the root of basic understanding by asking why:

• Why might we use tapply() instead of sapply()?
1.To tabulate our results by a grouping factor instead of just

summarizing in aggregate. Why?
2.To understand how relationships among our variables

change based upon other variables. Why?
3.To see if adding an interaction term to our linear model

would be appropriate. Why?

A S K I N G “ W H Y ? ” F I V E T I M E S

• Goal: Understand the difference between tapply() and sapply().

• Solution: Get at the root of basic understanding by asking why:

• Why might we use tapply() instead of sapply()?
1.To tabulate our results by a grouping factor instead of just

summarizing in aggregate. Why?
2.To understand how relationships among our variables

change based upon other variables. Why?
3.To see if adding an interaction term to our linear model

would be appropriate. Why?
4.To account for as much variation in our data as possible.

Why?

A S K I N G “ W H Y ? ” F I V E T I M E S

• Goal: Understand the difference between tapply() and sapply().

• Solution: Get at the root of basic understanding by asking why:

• Why might we use tapply() instead of sapply()?
1.To tabulate our results by a grouping factor instead of just

summarizing in aggregate. Why?
2.To understand how relationships among our variables

change based upon other variables. Why?
3.To see if adding an interaction term to our linear model

would be appropriate. Why?
4.To account for as much variation in our data as possible.

Why?
5.To glean insight into predicting our outcome.

A S K I N G “ W H Y ? ” F I V E T I M E S

• Goal: Understand the difference between tapply() and sapply().

• Solution: Get at the root of basic understanding by asking why:

• Why might we use tapply() instead of sapply()?
1.To tabulate our results by a grouping factor instead of just

summarizing in aggregate. Why?
2.To understand how relationships among our variables

change based upon other variables. Why?
3.To see if adding an interaction term to our linear model

would be appropriate. Why?
4.To account for as much variation in our data as possible.

Why?
5.To glean insight into predicting our outcome.

A S K I N G “ W H AT W O U L D Y O U D O ? ”

A S K I N G “ W H AT W O U L D Y O U D O ? ”

A S K I N G “ W H AT W O U L D Y O U D O ? ”

A S K I N G “ W H AT W O U L D Y O U D O ? ”

A S K I N G “ W H AT W O U L D Y O U D O ? ”

A S K I N G “ W H AT W O U L D Y O U D O ? ”

A S K I N G “ W H AT W O U L D Y O U D O ? ”

A S K I N G “ W H AT W O U L D Y O U D O ? ”

A S K I N G “ W H AT W O U L D Y O U D O ? ”

PC #1

PC #1

PC #2

PC #1

PC #2

PC #1

PC #2

W H E N I N D O U B T, T E S T I T O U T

W H E N I N D O U B T, T E S T I T O U T

• “Golden Nugget”: Whenever encountering a new class or
object in R, keep in mind some key “back-pocket”
functions:

W H E N I N D O U B T, T E S T I T O U T

• “Golden Nugget”: Whenever encountering a new class or
object in R, keep in mind some key “back-pocket”
functions:

• summary()

W H E N I N D O U B T, T E S T I T O U T

• “Golden Nugget”: Whenever encountering a new class or
object in R, keep in mind some key “back-pocket”
functions:

• summary()

• str()

W H E N I N D O U B T, T E S T I T O U T

• “Golden Nugget”: Whenever encountering a new class or
object in R, keep in mind some key “back-pocket”
functions:

• summary()

• str()

• names()

W H E N I N D O U B T, T E S T I T O U T

• “Golden Nugget”: Whenever encountering a new class or
object in R, keep in mind some key “back-pocket”
functions:

• summary()

• str()

• names()

• help()

W H E N I N D O U B T, T E S T I T O U T

• “Golden Nugget”: Whenever encountering a new class or
object in R, keep in mind some key “back-pocket”
functions:

• summary()

• str()

• names()

• help()

• plot()

F O R T H O S E W I T H A
B A C K G R O U N D I N P R O G R A M M I N G

PA R T I V

W H Y R M AY B E H A R D F O R P Y T H O N
P R O G R A M M E R S

W H Y R M AY B E H A R D F O R P Y T H O N
P R O G R A M M E R S
• Broadly speaking:

W H Y R M AY B E H A R D F O R P Y T H O N
P R O G R A M M E R S
• Broadly speaking:

• Python is a general-purpose programming language with the functionality
to perform various statistical computations.

W H Y R M AY B E H A R D F O R P Y T H O N
P R O G R A M M E R S
• Broadly speaking:

• Python is a general-purpose programming language with the functionality
to perform various statistical computations.

• R is a statistical programming language with the functionality to perform
like a general-purpose programming language.

W H Y R M AY B E H A R D F O R P Y T H O N
P R O G R A M M E R S
• Broadly speaking:

• Python is a general-purpose programming language with the functionality
to perform various statistical computations.

• R is a statistical programming language with the functionality to perform
like a general-purpose programming language.

• Golden Nugget:

W H Y R M AY B E H A R D F O R P Y T H O N
P R O G R A M M E R S
• Broadly speaking:

• Python is a general-purpose programming language with the functionality
to perform various statistical computations.

• R is a statistical programming language with the functionality to perform
like a general-purpose programming language.

• Golden Nugget:
• map(my_function, my_data) in Python:

W H Y R M AY B E H A R D F O R P Y T H O N
P R O G R A M M E R S
• Broadly speaking:

• Python is a general-purpose programming language with the functionality
to perform various statistical computations.

• R is a statistical programming language with the functionality to perform
like a general-purpose programming language.

• Golden Nugget:
• map(my_function, my_data) in Python:

• “Map my function to this particular data.”

W H Y R M AY B E H A R D F O R P Y T H O N
P R O G R A M M E R S
• Broadly speaking:

• Python is a general-purpose programming language with the functionality
to perform various statistical computations.

• R is a statistical programming language with the functionality to perform
like a general-purpose programming language.

• Golden Nugget:
• map(my_function, my_data) in Python:

• “Map my function to this particular data.”
• apply(my_data, my_function) in R:

W H Y R M AY B E H A R D F O R P Y T H O N
P R O G R A M M E R S
• Broadly speaking:

• Python is a general-purpose programming language with the functionality
to perform various statistical computations.

• R is a statistical programming language with the functionality to perform
like a general-purpose programming language.

• Golden Nugget:
• map(my_function, my_data) in Python:

• “Map my function to this particular data.”
• apply(my_data, my_function) in R:

• “Apply to my data this particular function.”

W H Y R M AY B E H A R D F O R P Y T H O N
P R O G R A M M E R S
• Broadly speaking:

• Python is a general-purpose programming language with the functionality
to perform various statistical computations.

• R is a statistical programming language with the functionality to perform
like a general-purpose programming language.

• Golden Nugget:
• map(my_function, my_data) in Python:

• “Map my function to this particular data.”
• apply(my_data, my_function) in R:

• “Apply to my data this particular function.”

• Common Pitfalls: Housekeeping on syntax.

W H Y R M AY B E H A R D F O R P Y T H O N
P R O G R A M M E R S
• Broadly speaking:

• Python is a general-purpose programming language with the functionality
to perform various statistical computations.

• R is a statistical programming language with the functionality to perform
like a general-purpose programming language.

• Golden Nugget:
• map(my_function, my_data) in Python:

• “Map my function to this particular data.”
• apply(my_data, my_function) in R:

• “Apply to my data this particular function.”

• Common Pitfalls: Housekeeping on syntax.
• Indexing in Python starts at 0; indexing in R starts at 1.

W H Y R M AY B E H A R D F O R P Y T H O N
P R O G R A M M E R S
• Broadly speaking:

• Python is a general-purpose programming language with the functionality
to perform various statistical computations.

• R is a statistical programming language with the functionality to perform
like a general-purpose programming language.

• Golden Nugget:
• map(my_function, my_data) in Python:

• “Map my function to this particular data.”
• apply(my_data, my_function) in R:

• “Apply to my data this particular function.”

• Common Pitfalls: Housekeeping on syntax.
• Indexing in Python starts at 0; indexing in R starts at 1.
• Python right-truncates when slicing; R does not right-truncate.

W H Y R M AY B E H A R D F O R P Y T H O N
P R O G R A M M E R S
• Broadly speaking:

• Python is a general-purpose programming language with the functionality
to perform various statistical computations.

• R is a statistical programming language with the functionality to perform
like a general-purpose programming language.

• Golden Nugget:
• map(my_function, my_data) in Python:

• “Map my function to this particular data.”
• apply(my_data, my_function) in R:

• “Apply to my data this particular function.”

• Common Pitfalls: Housekeeping on syntax.
• Indexing in Python starts at 0; indexing in R starts at 1.
• Python right-truncates when slicing; R does not right-truncate.
• Python uses “.” for accessing/applying functions; R uses “.” as a character.

W H Y R M AY B E H A R D F O R S A S
P R O G R A M M E R S

W H Y R M AY B E H A R D F O R S A S
P R O G R A M M E R S
• Common Benefits of R over SAS:

W H Y R M AY B E H A R D F O R S A S
P R O G R A M M E R S
• Common Benefits of R over SAS:

• Reading data to/from various file types is comparatively much simpler; you need
not write complex DATA statements that require deep knowledge of the construct
of the data.

W H Y R M AY B E H A R D F O R S A S
P R O G R A M M E R S
• Common Benefits of R over SAS:

• Reading data to/from various file types is comparatively much simpler; you need
not write complex DATA statements that require deep knowledge of the construct
of the data.

• Beauty in parsimony: often receive output tailored specifically to the goal at hand.

W H Y R M AY B E H A R D F O R S A S
P R O G R A M M E R S
• Common Benefits of R over SAS:

• Reading data to/from various file types is comparatively much simpler; you need
not write complex DATA statements that require deep knowledge of the construct
of the data.

• Beauty in parsimony: often receive output tailored specifically to the goal at hand.
• Interactivity in the command line.

W H Y R M AY B E H A R D F O R S A S
P R O G R A M M E R S
• Common Benefits of R over SAS:

• Reading data to/from various file types is comparatively much simpler; you need
not write complex DATA statements that require deep knowledge of the construct
of the data.

• Beauty in parsimony: often receive output tailored specifically to the goal at hand.
• Interactivity in the command line.
• Help documentation readily available.

W H Y R M AY B E H A R D F O R S A S
P R O G R A M M E R S
• Common Benefits of R over SAS:

• Reading data to/from various file types is comparatively much simpler; you need
not write complex DATA statements that require deep knowledge of the construct
of the data.

• Beauty in parsimony: often receive output tailored specifically to the goal at hand.
• Interactivity in the command line.
• Help documentation readily available.

• Common Benefits of SAS over R:

W H Y R M AY B E H A R D F O R S A S
P R O G R A M M E R S
• Common Benefits of R over SAS:

• Reading data to/from various file types is comparatively much simpler; you need
not write complex DATA statements that require deep knowledge of the construct
of the data.

• Beauty in parsimony: often receive output tailored specifically to the goal at hand.
• Interactivity in the command line.
• Help documentation readily available.

• Common Benefits of SAS over R:
• The Output Delivery System makes it easy to produce HTML or .pdf files of

output.

W H Y R M AY B E H A R D F O R S A S
P R O G R A M M E R S
• Common Benefits of R over SAS:

• Reading data to/from various file types is comparatively much simpler; you need
not write complex DATA statements that require deep knowledge of the construct
of the data.

• Beauty in parsimony: often receive output tailored specifically to the goal at hand.
• Interactivity in the command line.
• Help documentation readily available.

• Common Benefits of SAS over R:
• The Output Delivery System makes it easy to produce HTML or .pdf files of

output.
• Consider learning R Markdown as a substitute.

W H Y R M AY B E H A R D F O R S A S
P R O G R A M M E R S
• Common Benefits of R over SAS:

• Reading data to/from various file types is comparatively much simpler; you need
not write complex DATA statements that require deep knowledge of the construct
of the data.

• Beauty in parsimony: often receive output tailored specifically to the goal at hand.
• Interactivity in the command line.
• Help documentation readily available.

• Common Benefits of SAS over R:
• The Output Delivery System makes it easy to produce HTML or .pdf files of

output.
• Consider learning R Markdown as a substitute.

• Simple PROC commands produce extended, often superfluous output.

W H Y R M AY B E H A R D F O R S A S
P R O G R A M M E R S
• Common Benefits of R over SAS:

• Reading data to/from various file types is comparatively much simpler; you need
not write complex DATA statements that require deep knowledge of the construct
of the data.

• Beauty in parsimony: often receive output tailored specifically to the goal at hand.
• Interactivity in the command line.
• Help documentation readily available.

• Common Benefits of SAS over R:
• The Output Delivery System makes it easy to produce HTML or .pdf files of

output.
• Consider learning R Markdown as a substitute.

• Simple PROC commands produce extended, often superfluous output.
• Consider learning the basic theory behind the statistical models or

inference tests you desire to perform; do not rely upon searching among a
torrent of output for a small piece of interest.

W H Y R M AY B E H A R D F O R S P S S /
M I N I TA B U S E R S

W H Y R M AY B E H A R D F O R S P S S /
M I N I TA B U S E R S
• The biggest hurdle imposed by R for SPSS/Minitab users is the lack

of a Graphical User Interface.

W H Y R M AY B E H A R D F O R S P S S /
M I N I TA B U S E R S
• The biggest hurdle imposed by R for SPSS/Minitab users is the lack

of a Graphical User Interface.
• Negative: R does not have “drop-down” menus with all the

types of statistical models/analyses that could be performed.

W H Y R M AY B E H A R D F O R S P S S /
M I N I TA B U S E R S
• The biggest hurdle imposed by R for SPSS/Minitab users is the lack

of a Graphical User Interface.
• Negative: R does not have “drop-down” menus with all the

types of statistical models/analyses that could be performed.
• Positive: Upon switching to R, you will be required to write

code and, thus, become at least a novice programmer.

W H Y R M AY B E H A R D F O R S P S S /
M I N I TA B U S E R S
• The biggest hurdle imposed by R for SPSS/Minitab users is the lack

of a Graphical User Interface.
• Negative: R does not have “drop-down” menus with all the

types of statistical models/analyses that could be performed.
• Positive: Upon switching to R, you will be required to write

code and, thus, become at least a novice programmer.
• May seem like a harsh learning curve, but it’s worth it in

the long run.

W H Y R M AY B E H A R D F O R S P S S /
M I N I TA B U S E R S
• The biggest hurdle imposed by R for SPSS/Minitab users is the lack

of a Graphical User Interface.
• Negative: R does not have “drop-down” menus with all the

types of statistical models/analyses that could be performed.
• Positive: Upon switching to R, you will be required to write

code and, thus, become at least a novice programmer.
• May seem like a harsh learning curve, but it’s worth it in

the long run.

• Common Benefits of SPSS/Minitab over R:

W H Y R M AY B E H A R D F O R S P S S /
M I N I TA B U S E R S
• The biggest hurdle imposed by R for SPSS/Minitab users is the lack

of a Graphical User Interface.
• Negative: R does not have “drop-down” menus with all the

types of statistical models/analyses that could be performed.
• Positive: Upon switching to R, you will be required to write

code and, thus, become at least a novice programmer.
• May seem like a harsh learning curve, but it’s worth it in

the long run.

• Common Benefits of SPSS/Minitab over R:
• Data is depicted in a familiar spreadsheet-like visual; in R, it is

not seen unless specifically asked for.

W H Y R M AY B E H A R D F O R S P S S /
M I N I TA B U S E R S
• The biggest hurdle imposed by R for SPSS/Minitab users is the lack

of a Graphical User Interface.
• Negative: R does not have “drop-down” menus with all the

types of statistical models/analyses that could be performed.
• Positive: Upon switching to R, you will be required to write

code and, thus, become at least a novice programmer.
• May seem like a harsh learning curve, but it’s worth it in

the long run.

• Common Benefits of SPSS/Minitab over R:
• Data is depicted in a familiar spreadsheet-like visual; in R, it is

not seen unless specifically asked for.
• Use the View() function as a substitute.

E X T E R N A L R E S O U R C E S
A P P E N D I X

E X T E R N A L R E S O U R C E S

• R for Data Science (Hadley Wickham & Garrett Grolemund)
• “You’ll learn how to get your data into R, get it into the most useful structure, transform it,

visualize it and model it.”

• The Book of R (Tilman M. Davies)
• “The Book of R is a comprehensive, beginner-friendly guide to R…you’ll find everything

you need to begin using R effectively for statistical analysis.”

• swirl (Nick Carchedi, Brian Caffo, Sean Kross, et al.)
• “swirl teaches you R programming and data science interactively, at your own pace, and

right in the R console!”

• RStatistics.net
• “An educational resource for all things related to R language and its applications in

advanced statistical computing and machine learning.”

• An Introduction to R (Bill Venables & David Smith)

• Quick-R (Robert I. Kabacoff)

http://r4ds.had.co.nz/
https://nostarch.com/bookofr
http://swirlstats.com/
http://rstatistics.net/
https://cran.r-project.org/doc/manuals/R-intro.html
https://www.statmethods.net/index.html

- C H R I S T O P H E R P E T E R M A K R I S

“Thank you!”

