moderndive: statistical inference via the tidyverse

Albert Y. Kim

Jordan Moody

Ziwei "Crystal" Zang

Starry Zhou

USCOTS 2019 State College PA May 15-16

About us!

also my collaborators...

Jenny Smetzer

Chester Ismay

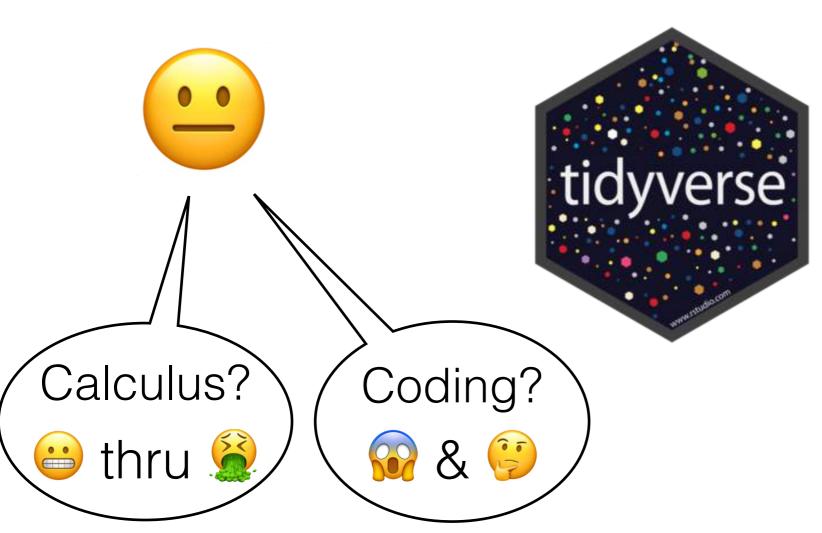
About you!

Say hi to your nearest neighbors! You'll be learning together!

My Context for moderndive

My students:

- Undergraduate-only liberal arts college
- Service intro stats course for all majors, all years
- Calculus is a pre-req only in name
- 13 weeks x (3 x 70min lectures + 75min lab)
- 29/40 had never coded in R prior

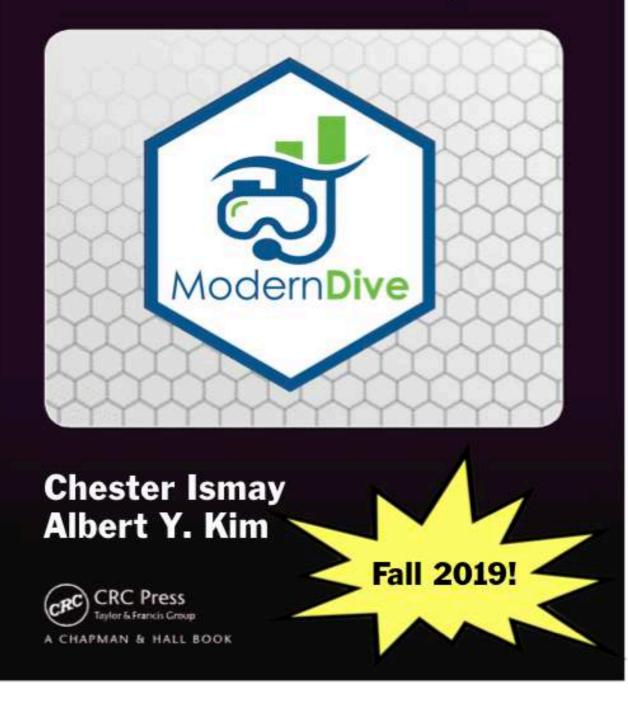

My goals:

- Goal 1: Sampling for inference
- Goal 2: Modeling with regression

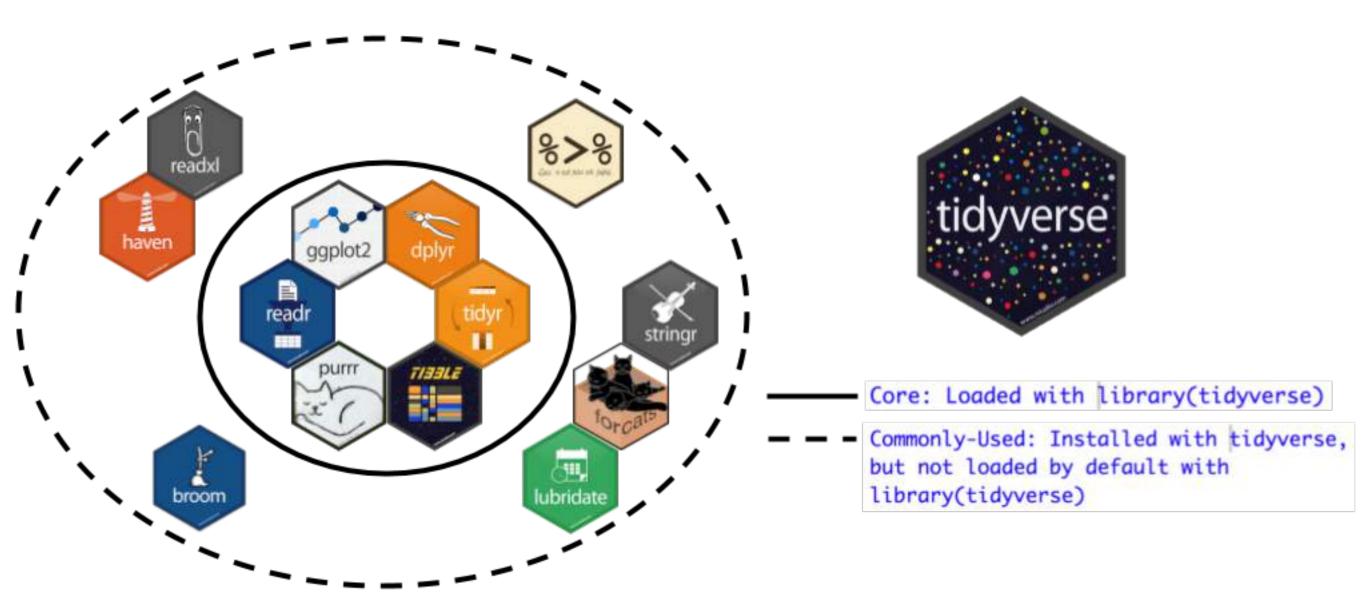
Getting from Point A to Point B via the

tidyverse

Point A: Modal 1st time stats student


Point B: Two goals

- 1. Sampling for inference
- 2. Modeling with regression


The R Series

Statistical Inference via Data Science by way of

A moderndive into R & the tidyverse

What is the tidyverse?

- ggplot2 for data visualization
- dplyr for data wrangling
- readr for data importing

Why tidyverse? Some principles

From tidy tools manifesto: Say what?

- 1. Reuse existing data structures
- 2. Compose simple functions with the pipe
- 3. Embrace functional programming
- 4. Design for humans

- 1. Don't reinvent the wheel!
- 2. Break down tasks step-bystep!
- 3. What is the <u>goal</u> of your code?
- 4. Make code understandable

Why tidyverse for stats newbies?

- In my opinion it's easier to learn than base R.
 <u>Others too</u>.
- It scales. You leverage an entire ecosystem of online developers and support: Google & StackOverflow
- Satisfy learning goals <u>while learning tools</u> <u>they can use beyond the classroom</u>

Goal 1: Sampling for Inference

1. Tactile Sampling → 2. Virtual Sampling → 3. Theoretical Console -/ > library(moderndive) > bowl # A tibble: 2,400 x 2 ball_ID color <int> <chr> 1 white Population 2 white 3 white 4 red 5 white 6 white 7 red 8 white 9 red 10 white with 2,390 more rows > Console -/ Sampling > bowl %>% Inference + rep_sample_n(size = 50, reps = 1) # A tibble: 50 x 3 # Groups: replicate [1] replicate ball_ID color <int> <int> <chr> 226 white 1304 red Sample 1230 white 984 white 68 white 1965 white 431 white 1184 white 1610 red 978 white 1 . with 40 more rows Distribution of 1000 proportions red 300 Sampling 200 -**Distributions &** Standard Errors 100 p(1-p)SE =015 02 035 03 035 04 Proportion red of 50 balls 0 0.2 0.3 0.4 0.5 0.6 Proportion of 50 balls that were red

Goal 2: Modeling with Regression 2. Exploratory Data Analysis 1. Data

	evals ID ID ID I I 2 Z 3 3 4 4 5 6 7 7 8 9 9 10 10 10 11 11 12 12	Filter score 4.7 4.1 3.9 4.8 4.6 4.3 2.8 4.1 3.4 4.5 3.8 4.5	age 36 36 36 36 59 59 51 40 40 40	genderfemalefemalefemalefemalemalemalemalefemalefemalefemalefemalefemalefemalefemalefemalefemalefemalefemalefemalefemalefemalefemalefemale	Gender
3. Regre	ssio	n C	Co	eff	4. Regression Table
Console ~/ ≫ > score_model <- lm(scor > get_regression_table(s # A tibble: 4 x 7 term <chr> 1 intercept 2 age 3 gendermale 4 age:gendermale ></chr>	core_model)	ender, d	data =	evals)	<pre>Sampling Score_model <- lm(score ~ age * gender, data = evals) get_regression_table(score_model) # A tibble: 4 x 7 term estimate <chr> < dbl> <dbl> <dbl <="" <dbl="" <dbl<="" td=""></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></chr></pre>
Early: Descri	ptive i	regr	ess	sion	Later: Inference for Regression

Early: Descriptive regression

End Deliverable

Final project that <u>"plays the whole game"</u> of data/science pipeline:

Example <u>template</u> given to students this semester, based on work by Alexis Cohen, Andrianne Dao, & Isabel Gomez last semester.

Schedule

See Google Doc available at bit.ly/USCOTS2019

Keep in mind throughout...

- You are not currently you, but you are currently your students as best as you can imagine.
- In other words, these exercises are meant for your students!
- Ultimately where do I start? <u>Start small!</u>

Questions?

Activity: Your Birthday

For Every Chapter...

Slides on:

- 1. What are we doing ?
- 2. Why are we doing this 🤪
- 3. Opinions
- 4. Potential pitfalls 🔔

Followed by activities:

- 1. Chalk talk, pen/paper, or tactile exercise
- 2. Replicating exercise on computer
- 3. Exercise
- 4. Discussion

Chapter 2: Exploring data

- 1. What are we doing ?
 - Getting used to workspace via data exploration
- 2. Why are we doing this 🧐
 - Getting them over initial \$\vec{\vec{Q}}\$ of coding
- 3. Our opinions
 - Stress importance of looking at RAW data values. Removing these layers of abstraction.
- 4. Potential pitfalls 🔔
 - Difference of R vs RStudio
 - Installing/loading packages
 - Error messages, warning messages, regular messages
 - Coding: both student self doubt & <u>lowered instructor</u> <u>expectations</u>

Chapter 3: Visualizing Data

- 1. What are we doing ?
 - Creating (colored) scatterplots, histograms, boxplots
- 2. Why are we doing this 🤔
 - Equip students with tools for both our goals
 - Exploratory data analysis!!!
- 3. Our opinions
 - Viewing all graphics through lens of the Grammar of Graphics (via ggplot2)
- 4. Potential pitfalls 🔔
 - Histograms & boxplots involve transformations of raw values
 - Coding ramps up: Reassure students! Encourage them to not code from scratch, rather copy/paste/ tweak

Chapter 4: Data Wrangling

- 1. What are we doing ?
 - Learning the pipe operator %>%
 - Wrangling/transforming data
- 2. Why are we doing this 🧐
 - Equip students with tools for both our goals
- 3. Our opinions
 - To completely shield students from any data wrangling is to betray true nature of work in our fields
- 4. Potential pitfalls 🔔
 - How much wrangling should you require vs you curate yourself?

Chapter 5: "Tidy" data

- 1. What are we doing ?
 - tidyverse gets its name from fact that all inputs/ outputs are assumed to be *tidy data frames*
 - Importing data via readr::read_csv()
- 2. Why are we doing this 🤪
 - Students have their own Excel/Google Sheets data
 - Will have to convert from wide to tidy/long format
- 3. Our opinions
 - This chapter can be skipped if
 - A. You only provide tidy/long data
 - B. You have your students <u>publish .csv</u> files to Google Sheets
- 4. Potential pitfalls 🔔
 - Working directories!

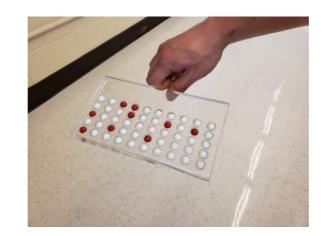
Chapter 6: Simple regression

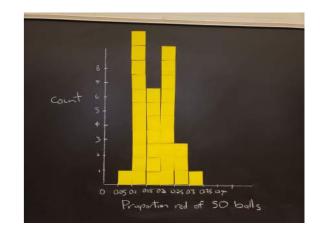
Goal 2: Modeling with Regression 2. Exploratory Data Analysis 1. Data

	evals ID ID ID I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I II II II II II II II II II II II II II III III	 Filter score 4.7 4.1 3.9 4.8 4.6 4.3 2.8 4.1 3.4 4.5 3.8 4.5 	36 36 36 59 59 59 51 51 51 40 40	gender female female female female male male male female female female	Cender
3. Regre	ssio	n C	Coe	eff '	4. Regression Table
<pre>Console ~/ ↔ > score_model <- lm(score) > get_regression_table(state) # A tibble: 4 x 7 term <chr> 1 intercept 2 age 3 gendermale 4 age:gendermale 0.01 ></chr></pre>	core_model) e > 8 6		lata = ev	/als)	Sampling Console ~/ @ Score_model <- lm(score ~ age * gender, data = evals)
Early: Descri	ptive	regr	essi	on	Later: Inference for Regression

Early: Descriptive regression

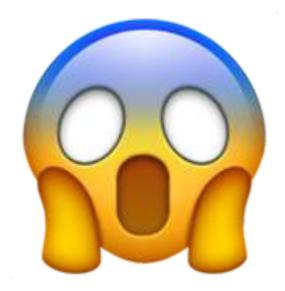
- 1. What are we doing ?
 - <u>Descriptive</u> simple linear regression & regression with single categorical x only.
- 2. Why are we doing this 🤥
 - Multivariate thinking per <u>GAISE guidelines</u> & modeling
- 3. Our opinions
 - Separate descriptive vs inference so we can introduce it early, not at end of term
 - moderndive::get_regression_table() function has Cl's, no p-value <u>%s</u>
 - Much of world's data is categorical, to skip is to do students a disservice
 - Introduce <u>causal inference</u>
- 4. Potential pitfalls
 - Understanding <u>regression with categorical x</u>


Chapter 7: Multiple regression


Goal 1: Sampling for Inference

1. Tactile Sampling → 2. Virtual Sampling → 3. Theoretical Console -/ > library(moderndive) > bowl # A tibble: 2,400 x 2 ball_ID color <int> <chr> 1 white Population 2 white 3 white 4 red 5 white 6 white 7 red 8 white 9 red 10 white with 2,390 more rows > Console -/ Sampling > bowl %>% Inference + rep_sample_n(size = 50, reps = 1) # A tibble: 50 x 3 # Groups: replicate [1] replicate ball_ID color <int> <int> <chr> 226 white 1304 red Sample 1230 white 984 white 68 white 1965 white 431 white 1184 white 1610 red 978 white 1 . with 40 more rows Distribution of 1000 proportions red 300 Sampling 200 -**Distributions &** Standard Errors 100 p(1-p)SE =015 02 035 03 035 04 Proportion red of 50 balls 0 0.2 0.3 0.4 0.5 0.6 Proportion of 50 balls that were red

Statistical Inference


Issues:

- 1. Easily lost in many layers of abstraction
- 2. 🙀 Notation, terminology, & definitions 🙀

	[isostat] Is notation and language a barrier to students learning introductory statistics? 🗘 🖶 Statistics/ISOSTAT ×	Ø
-	Brenneman, Matthew T. Hi, I am curious what others think about the hypothesis that the notation and the language commonly used in introductory statistics courses are a potential barr	☆
	Jesse Troy, Ph.D. Hi Matt, I teach a "statistics" course to medical students at Duke. I use quotes around the word statistics because I don't really teach the students how to do	☆
•	Laura Kapitula Hi, I like the work of Kaplan and Rogness for some nice activities and a discussion of lexical ambiguity in statistics. https://scholarcommons.usf.edu/numeracy/	☆
	Lacka Christopher I	~

Hi Matt: With regard to proportions, I have been very careful to stay away from the use of "percentage," primarily because so many of my students lack basic mat

Hypothesis Testing

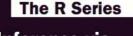

Transference & Generalizability

TABLE 8.6: Scenarios of sampling for inference

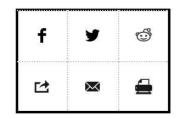
Scenario	Population parameter	Notation	Point estimate	Notation.	
1	Population proportion	p	Sample proportion	\hat{p}	
2	Population mean	μ	Sample mean	$\widehat{\mu}$ or \overline{x}	
3	Difference in population proportions	$p_1 - p_2$	Difference in sample proportions	$\hat{p}_1-\hat{p}_2$	
4	Difference in population means	$\mu_1-\mu_2$	Difference in sample means	$\overline{x}_1 - \overline{x}_2$	
5	Population regression slope	eta_1	Sample regression slope	${\widehat eta}_1$ or b_1	
6	Population regression intercept	eta_0	Sample regression intercept	${\widehat eta}_0$ or b_0	

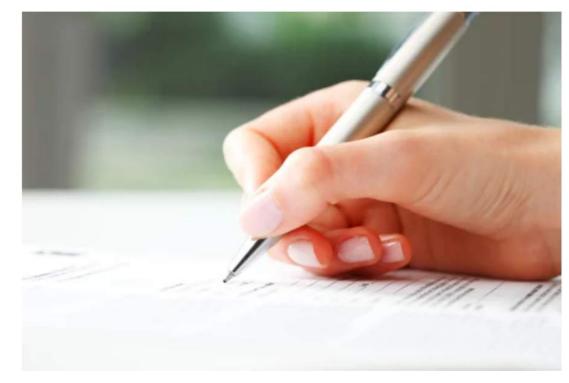
Timeline

- Now: Follow development version "under construction" at <u>moderndive.netlify.com</u>
- Mid-June: Preview of print edition available on <u>moderndive.com</u>
- Late-July: Posting labs and example final project samples
- Fall 2019: Print edition available!

Tips!

- Start small
- Teaching/learning code is a psychological battle
- You will run into problems


The debate continues...


MIND

A Learning Secret: Don't Take Notes with a Laptop

Students who used longhand remembered more and had a deeper understanding of the material

By Cindi May on June 3, 2014 📮 27 Véalo en español

READ THIS NEXT

The Science of Education: Back to School

The old fashioned way works better. Credit: Credit: Szepy via iStock

Coding

<u>Cobb (2015)</u> argued there are two possible computational engines for statistics:

$$t = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{S_{\overline{X}_1 - \overline{X}_2}} = \frac{\overline{X}_1 - \overline{X}_2}{S_{\overline{X}_1 - \overline{X}_2}}$$

$$S_{\overline{X}_1 - \overline{X}_2} = \sqrt{\frac{(N_1 - 1)s_1^2 + (N_2 - 1)s_2^2}{N_1 + N_2 - 2}} \left[\frac{1}{N_1} + \frac{1}{N_2}\right]$$

Teaching/Learning Code

- Learn how a practitioner would learn: the "Copy/paste/tweak approach"
- Borrow elements of "flipped classroom": how to use time we're all in the same room together?

Teaching Coding: The Battle is Psychological

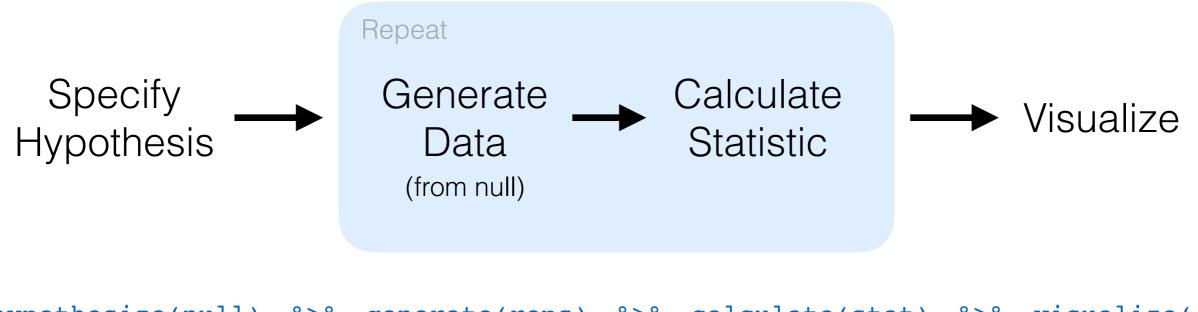
- "Don't code from scratch, take the copy/paste/tweak approach!"
- "Computers are stupid!"
- "Learning to code is similar to learning a language"

New Tools Specific for Data Science

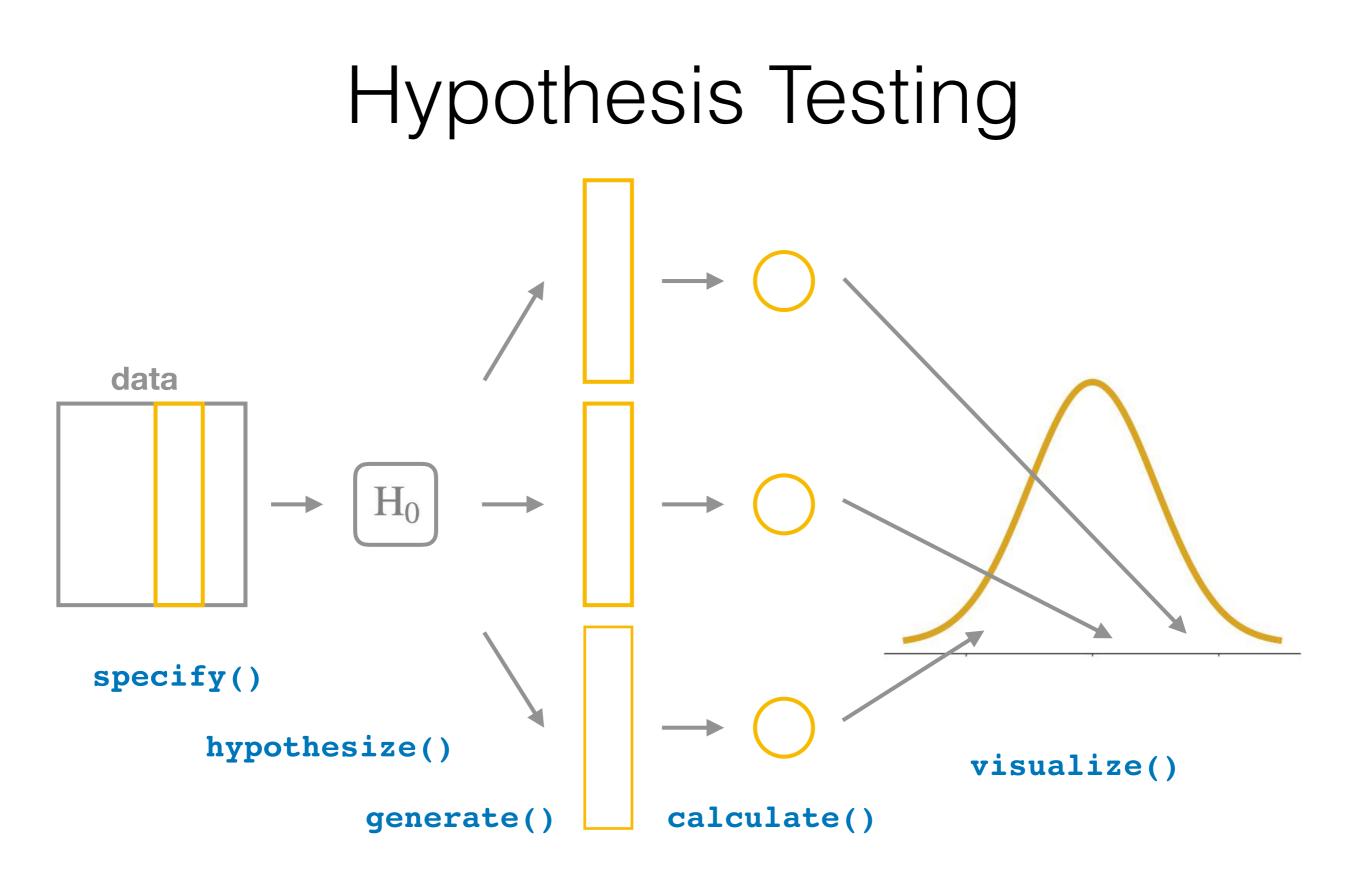
David Robinson

Data Scientist at Stack Overflow, works in R and Python.

Teach the tidyverse to beginners


A few years ago, I wrote a post <u>Don't teach built-in plotting to beginners</u> (teach ggplot2). I argued that ggplot2 was not an advanced approach meant for experts, but rather a suitable introduction to data visualization.

Many teachers suggest I'm overestimating their students: "No, see, my students are beginners...". If I push the point, they might insist I'm not understanding just how much of a beginner these students are, and emphasize they're looking to keep it simple and teach the basics, and that that students can get to the advanced methods later....



infer package for tidy statistical inference

http://infer.netlify.com/

hypothesize(null) %>% generate(reps) %>% calculate(stat) %>% visualize()

