Mobile Teaching Statistics with Web Based Dynamic Graphical SW *eStat*,

www.estat.me

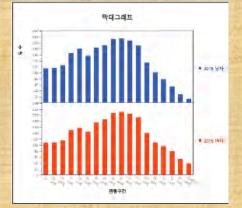
Jung Jin Lee, Soongsil University, Korea jjlee@ssu.ac.kr

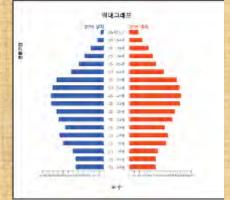
Example of mobile teaching statistics by using eStat

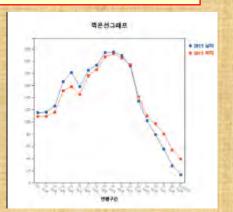
■ Book + eLecture + eStat Practice

[Example 2.2.2] (Male and Female Population by Age Group- Two Group Summary Data)
In 2015, the male and female populations by age group in Korea are shown in Table 2.2.3. Using this data, draw bar chart, pie chart, band graph, and line graph of the population by age group and examine their characteristics.

Table 2.2.3 male and female populations by age group in Korea (KOSTAT Census 2015, unit 10,000)


Age Interval	2015 Male	2015 Female
00 - 04	115	109
05 - 09	116	109
10 - 14	126	116
15 - 19	166	151
20 - 24	181	158
25 - 29	158	145
30 - 34	185	176
35 - 39	193	186
40 - 44	214	207
45 - 49	215	212
50 - 54	209	205
55 - 59	192	194
60 - 64	134	141
65 - 69	102	110
70 - 74	79	97
75 - 79	55	80
80 - 84	28	54
over 85	13	39


QR for eStat





QR for lecture movie

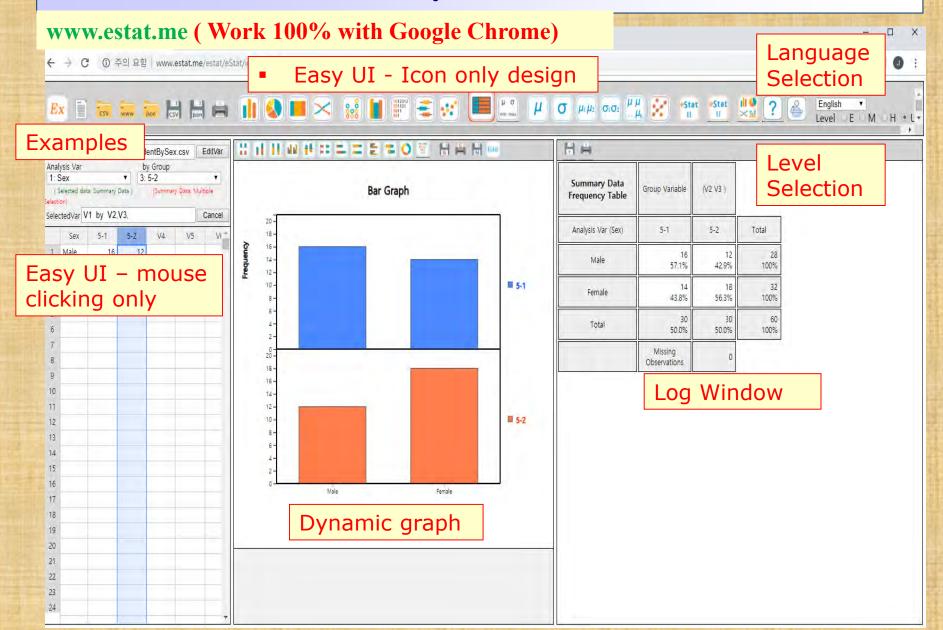
1. eStat Project Background

- > Rapid Advance in Information Technology
 - => Big Data are generated
 - => Statistics is more important than any other era
 - => Data analysis by using a statistical packages is essential
- > Statistics education by using SAS, SPSS, MINITAB, R become popular
 - => Statistical packages are good for data processing not enough for teaching statistics
 - => Teaching SAS or R is not easy for non-statistics major and elementary/middle school students

© Project started in 2012, supported partially by KNSO

- > Web/Mobile based software by HTML5, CSS3, JavaScript
- **Easy User Interface for all levels of students**
 - mouse clicking only
- > Dynamic graphs to amuse students by D3
- > Data processing for raw and summary data
- **Educational design of statistical outputs**
- Capability for eLearning system
- > Multilingual

© eStat modules


Elementary School

- Middle School
- High School
- University

Binomial, Normal, Sampling Distribution, Law of Large Number, Confidence Interval

Distributions – Binomial, Poisson,
Hypergeometric, Normal, Exponential
Estimation & Testing Hypothesis –
parameters for 1, 2, many
populations(ANOVA)
Nonparametric Tests – Wilcoxon, KruskalWallis, Friedman
Correlation and Regression

2. eStatU System Menu

eStatU - University Statistics Education SW

Uniform Random Number

Binomial Experiment

Binomial Distribution

Poisson Distribution

Geometric Distribution

HyperGeometric Distribution

Exponential Distribution

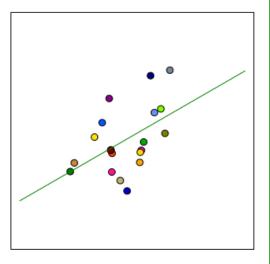
Normal Experiment

Normal Distribution

t Distribution

ChiSquare Distribution

F Distribution


Wilcoxon Signed Rank Sum Dist.

Wilcoxon Rank Sum Distribution

Kruskal-Wallis H Distribution

Friedman S Distribution

HSD Studentized Range Dist.

Contact: jjlee@ssu.ac.kr © eStat.org, Korea

Law of Large Number

Population vs Sample

Dist of Sample Means

Confidence Interval

Correlation Coefficient

Regression Experiment

Testing Hypothesis µ

Testing μ - C, β

Testing μ - C, n

Testing Hypothesis σ^2

Testing Hypothesis p

Testing Hypothesis μ_1 , μ_2

Testing Hypothesis σ_1^2 , σ_2^2

Testing Hypothesis p₁, p₂

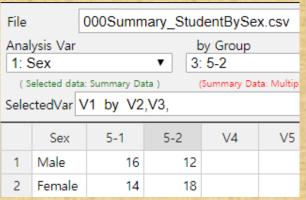
Testing Hypothesis ANOVA

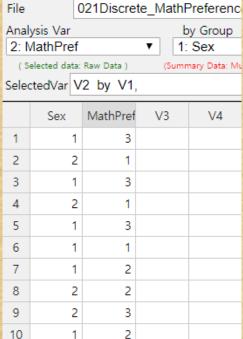
Sign Test

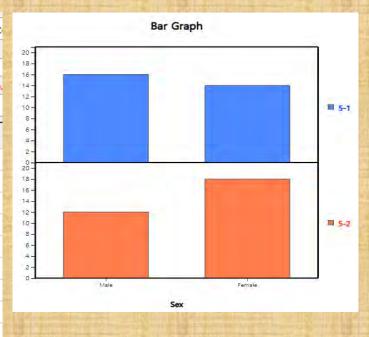
Signed Rank Sum Test

Rank Sum Test

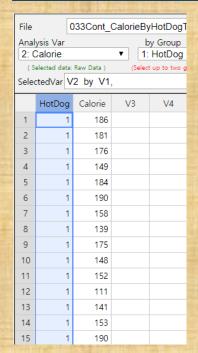
Kruskal-Wallis Test

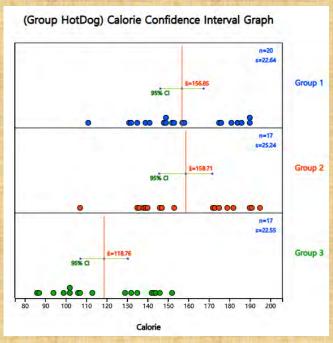

Friedman Test

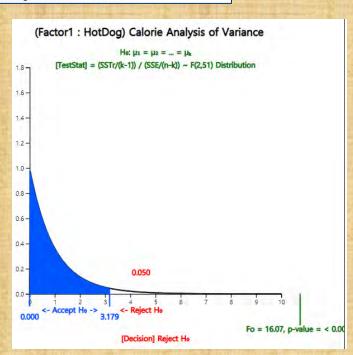

Goodness of Fit Test


Testing Independence

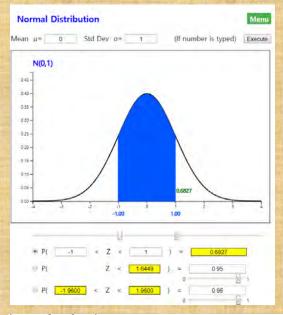
O Data and Dynamic Graph

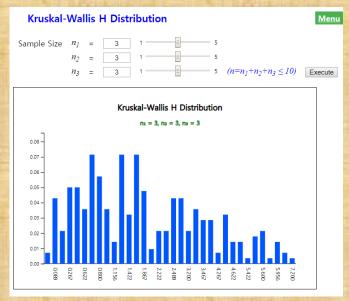

- > Support csv and json format
- > Support summary and raw data for data processing
- Dynamic graph





© Graphical Result of Statistical Analysis - ANOVA





Analysis of Variance					
Factor	Sum of Squares	deg of freedom	Mean Squares	F value	p value
Treatment	17692.195	2	8846.098	16.074	< 0.0001
Error	28067.138	51	550.336		
Total	45759.333	53			

All tables of statistical distributions are on smart-phone

Normal Distribution	μ = 0	σ = 1.000													
×	P(X ≤ x)	×.	P(X s x)	×	P(X ≤ x)	×	P(X ≤ x)	×	P(X ≤ x)	×	P(X ≤ x)	×	P(X s x)	×	P(X ≤ x)
-3.99	0.0000	-2.99	0.0014	-1.99	0.0233	-0.99	0.1611	0.01	0.5040	1.01	0.8438	2.01	0.9778	3.01	0.9987
-3.98	0.0000	-2.98	0.0014	-1.98	0.0239	-0.98	0.1635	0.02	0.5080	1.02	0.8461	2.02	0.9783	3.02	0.9987
-3.97	0.0000	-2.97	0.0015	-1.97	0.0244	-0.97	0.1660	0.03	0.5120	1.03	0.8485	2.03	0.9788	3.03	0.9988
-3.96	0.0000	-2.96	0.0015	-1.96	0.0250	-0.96	0.1685	0.04	0.5160	1.04	0.8508	2.04	0.9793	3.04	0.9988
-3.95	0.0000	-2.95	0.0016	-1.95	0.0256	+0.95	0.1711	0.05	0.5199	1.05	0.8531	2.05	0.9798	3.05	0.9989
-3.94	0.0000	-2.94	0.0016	-1.94	0.0262	-0.94	0.1736	0.06	0.5239	1.06	0.8554	2.06	0.9803	3.06	0.9989
-3.93	0.0000	-2.93	0.0017	-1.93	0.0268	-0.93	0.1762	0.07	0.5279	1.07	0.8577	2.07	0.9808	3.07	0.9989
-3.92	0.0000	-2.92	0.0018	-1.92	0.0274	-0.92	0.1788	0.08	0.5319	1.08	0.8599	2.08	0.9812	3,08	0.9990
-3.91	0.0000	-2.91	0.0018	-1.91	0.0281	-0.91	0.1814	0.09	0.5359	1.09	0.8621	2.09	0.9817	3.09	0.9990
-3.90	0.0000	-2.90	0.0019	-1.90	0.0287	-0.90	0.1841	0.10	0.5398	1.10	0.8643	2.10	0.9821	3.10	0.9990
-3.89	0.0001	-2.89	0.0019	-1.89	0.0294	-0.89	0.1867	0.11	0.5438	1.11	0.8665	2.11	0.9826	3.11	0.9991
-3.88	0.0001	-2.88	0.0020	-1.88	0.0301	-0.88	0.1894	0.12	0.5478	1.12	0.8686	2.12	0.9830	3.12	0.9991
-3.87	0.0001	-2.87	0.0021	-1.87	0.0307	-0.87	0.1922	0.13	0.5517	1.13	0.8708	2.13	0.9834	3.13	0.9991
-3.86	0.0001	-2.86	0.0021	-1.86	0.0314	-0.86	0.1949	0.14	0.5557	1.14	0.8729	2.14	0.9838	3.14	0.9992
-3,85	0.0001	-2.85	0.0022	-1.85	0.0322	-0.85	0.1977	0.15	0,5596	1,15	0.8749	2.15	0.9842	3.15	0.9992
-3.84	0.0001	-2.84	0.0023	-1.84	0.0329	-0.84	0.2005	0.16	0.5636	1.16	0.8770	2.16	0.9846	3.16	0.9992
-3.83	0.0001	-2.83	0.0023	-1.83	0.0336	-0.83	0.2033	0.17	0.5675	1.17	0.8790	2.17	0.9850	3.17	0.9992

Kruskal- Wallis H Distribution	k = 3		
	n ₁ = 3	n ₂ = 3	n ₃ = 3
×	P(X = x)	P(X ≤ x)	P(X ≥ x)
0.000	0.0071	0.0071	1.0000
0.089	0.0429	0.0500	0.9929
0.089	0,0214	0.0714	0.9500
0.267	0.0500	0.1214	0.9286
0.356	0.0500	0.1714	0.8786
0.622	0,0357	0.2071	0.8286
0.622	0.0714	0.2786	0.7929
0.800	0.0571	0.3357	0.7214
1.067	0.0357	0.3714	0.6643
1.156	0.0143	0.3857	0.6286
1.156	0.0714	0.4571	0.6143
1.422	0.0321	0.4893	0.5429
1.689	0.0714	0.5607	0.5107
1.867	0.0476	0.6083	0.4393
1.867	0.0095	0.6179	0.3917
2.222	0.0214	0.6393	0.3821
2.400	0.0214	0.6607	0.3607

Modules for Home Work Assignment - eStatU

Testing Hypothesis μ_1 , μ_2

[Hypothesis] $H_o: \mu_1 - \mu_2 = D$ 0

 \bullet $H_1: \mu_1 - \mu_2 \neq D$ \circ $H_1: \mu_1 - \mu_2 > D$ \circ $H_1: \mu_1 - \mu_2 < D$

[Test Type] t test , Variance Assumption \bullet $\sigma_1^2 = \sigma_2^2$ \circ $\sigma_1^2 \neq \sigma_2^2$

Significance Level $\alpha = 9.5\%$ 1%

Sampling Type • independent sample • paired sample

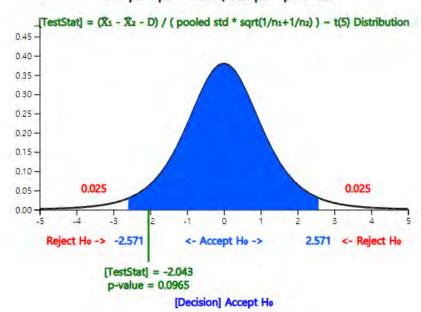
[Sample Data] Input either sample data using BSV or sample statistic

Sample 1 1234

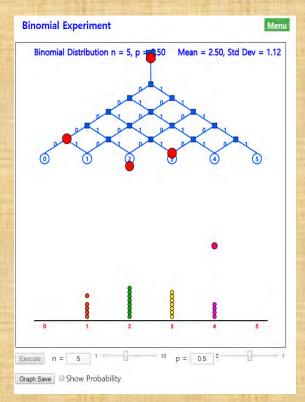
Sample 2 356

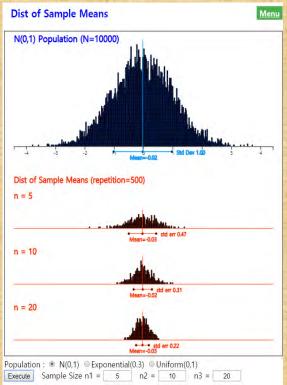
[Sample Statistics]

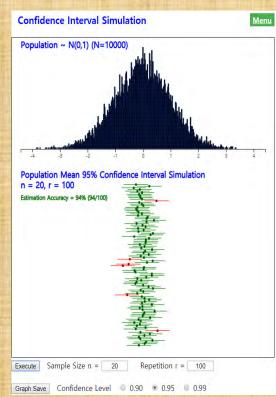
Sample Size $n_1 = 4$ $n_2 =$


Sample Mean $\bar{x}_1 = 2.50$ $\bar{x}_2 = 4.67$

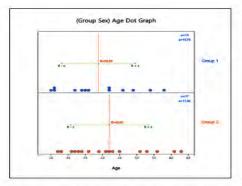
Sample Variance $s_1^2 = 1.67$ $s_2^2 = 2.33$


Execute


<u>Menu</u>


Ho: $\mu_1 - \mu_2 = 0.00$, H1: $\mu_1 - \mu_2 \neq 0.00$

O Simulation Experiments

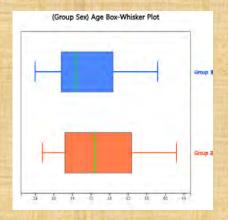



3. eStat Mobile Teaching

- Data Visualization

3.2.2 Visualization of Continuous Data with Group

[Example 3.2.2] (age - two group continuous data). The data on the gender and age of a middle school teacher is ⇒ 02Englsh ⇒ 032 Continuous TeacherAgeByGender.csv. Use reStat, to draw a dot graph, histogram, stem and leaf plot.


665 2 1 1 1 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Group 1 Leaf	Stem	Group 2 Last	
	665 6542 622			

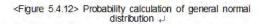
<Figure 3.2.6-2> Dot graph of age by <Figure 3.2.7-2> Histogram of age by <Figure 3.2.9-2> Both direction stem gender with mean

gender with polygon

and leaf plot of age by sex

Histogram Frequency Table	Group Name	(Sex)	
Interval (Age)	Group 1 (Group 1)	Group 2 (Group 2)	Total
(25.00 30.43)	3 (23.1%)	(11.8%)	5 (16.7%)
(30.43, 35.86)	(23,1%)	4 (23,5%)	7 (23.3%)
3 [35.86, 41.29)	(7.7%)	(17.6%)	4 (13.3%)
4 (41.29, 46.71)	(23.1%)	(17.6%)	(20.0%)
5 [46.71: 52.14)	(7.7%)	(5,9%)	(6.7%)
(52.14, 57.57)	(7,7%)	(11.8%)	(10.0%)
7 [57:57, 63:00)	(7.7%)	(11.8%)	(10.0%)
Total	13 (100%)	17 (100%)	30 (100%)

	Sex	Age
1	1	26
2	1	34
3	2	28
4	2	39
5	1	32
6	1	36
7	2	41
8	2	42
9	1	26
10	1	25
11	2	33
12	2	43
13	1	54
14	1	49
15	2	56


3. eStat Mobile Teaching

5.4.1 Normal Distribution

L

[Example 5.4.4] If the mid-term scores (X) of the Statistics course follows a normal distribution with an average of 70 points and a standard deviation of 10 test results X, calculate the following probabilities. Check the calculated value by using restatu.

1) P(X < 94.3) 2) P(X > 57.7) 3) P(57.7 < X < 94.3)↓

- Normal Distribution

정규분포	μ = 0	σ = 1.000							
p	$P(X \le X) = p$	p	$P(X \le x) = p$	р	$P(X \le X) = p$	p	$P(X \le X) = p$	р	P(X ≤ x) =
0.005	-2.576	0.205	-0.824	0.405	-0.240	0.605	0.266	0.805	0.860
0.010	-2.326	0.210	-0.806	0.410	-0.228	0.610	0.279	0.810	0.878
0.015	-2.170	0.215	-0.789	0.415	-0.215	0.615	0.292	0.815	0.896
0.020	-2.054	0.220	-0.772	0.420	-0.202	0.620	0.305	0.820	0.915
0.025	-1.960	0.225	-0.755	0.425	-0.189	0.625	0.319	0.825	0.935
0.030	-1.881	0.230	-0.739	0.430	-0.176	0.630	0.332	0.830	0.954
0.035	-1.812	0.235	-0,722	0.435	-0.164	0.635	0.345	0.835	0.974
0.040	-1.751	0.240	-0.705	0.440	-0.151	0.640	0.358	0.840	0.994
0.045	-1.695	0.245	-0.690	0.445	-0.138	0.645	0.372	0.845	1.015
0.050	-1.645	0.250	-0.674	0.450	-0.126	0.650	0.385	0.850	1.036
0.055	-1.598	0.255	-0.659	0.455	-0.113	0.655	0.399	0.855	1.058
0.060	-1.555	0.260	-0.643	0.460	-0.100	0.660	0.412	0.860	1.080
0.065	-1.514	0.265	-0.628	0.465	-0.088	0.665	0.426	0.865	1.103
0.070	-1.476	0.270	-0.613	0.470	-0.075	0.670	0.440	0.870	1.126
0.075	-1.440	0.275	-0.598	0.475	-0.063	0.675	0.454	0.875	1.150
0.080	-1.405	0.280	-0.583	0.480	-0.050	0.680	0.468	0.880	1.175
0.085	-1.372	0.285	-0.568	0.485	-0.038	0.685	0.482	0.885	1.200
0.090	-1.341	0.290	-0.553	0.490	-0.025	0.690	0.496	0.890	1.227
0.095	-1.311	0.295	-0.539	0.495	-0.013	0.695	0.510	0.895	1.254
0.100	-1.282	0.300	-0.524	0.500	0.000	0.700	0.524	0.900	1.282

3. eStat Mobile Teaching

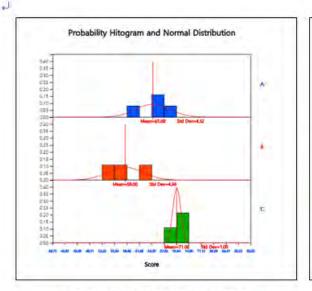
- Kruskal Wallis ANOVA

10.3.1 Completely Randomized Design: Kruskal-Wallis Test 🗇

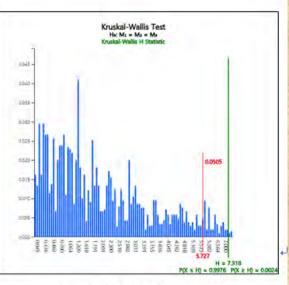
+

[Example 10.3.1] The results of a survey of job satisfaction by sampling employees of three companies are as follows: From this data, can you say that the three companies have different job satisfaction levels?

4


Company A 69 67 65 59 J Company B 56 63 55 J

Company C 71 72 70 ...


له

- 1) Draw a histogram of the data to see if the average job satisfaction level of the three companies can be tested in a parametric way.
- 2) Using the nonparametric method, test whether the three companies can be said to have different job satisfaction levels. a significant level of 5%

<Figure 10.3.3> Histogram by company, ...

<Figure 10.3.6> Kruskal-Wallis test↓

Testing Hypothesis ANOVA
[Hypothesis] $H_0: \mu_1 = \mu_2 = = \mu_k$ $H_1: At least one pair of means is different$
[Test Type] F test (ANOVA) Significance Level $\alpha = 0.5\%$ 0. 1% [Sample Data] Input either sample data using BSV or sample statistics at the next boxes
· · · · · · · · · · · · · · · · · · ·
Sample 1 69 67 65 59
Sample 2 56 63 55
Sample 3 71 72 70
Sample 4
[Sample Statistics]
$n_1 =$ 4 $n_2 =$ 3 $n_3 =$ 3 $n_4 =$
$m_1 = 65.00$ $m_2 = 58.00$ $m_3 = 71.00$ $m_4 = 65.00$
$s_1^2 = \begin{bmatrix} 18.67 \\ s_2^2 = \end{bmatrix} = \begin{bmatrix} 19.00 \\ s_3^2 = \end{bmatrix} = \begin{bmatrix} 1.00 \\ s_4^2 = \end{bmatrix}$
Execute

Kruskal-Wallis Test	Analysis Var	Score			
Statistics	Observation	Mean	Std Dev	Rank Sum	
1 (A)	4	65.000	4.320	21.00	
2 (B)	3	58.000	4.359	7.00	
3 (C)	3	71.000	1.000	27.00	
Total	10	64.700	6.237	55.00	
Missing Observations	0				
Hypothesis					
H ₀ : M ₁ = M ₂ = M ₃	[TestStat]	[TestStat] H		P(X ≥ H)	
At least one pair of locations is different	Н	7.318	0.9976	0.0024	

4. Conclusion

- > eStat is an integrated statistical software for teaching as well as data processing to all level of students.
- > To continue this freeware eStat project,
 - => international collaboration among statistician, mathematics education, school teachers to share experience, idea, and technology

